31 January 2013

The Evolutionary Origins of Modularity

By simulating 25,000 generations of evolution within computers, Cornell University engineering and robotics researchers have discovered why biological networks tend to be organized as modules -- a finding that will lead to a deeper understanding of the evolution of complexity.

The team discovered that evolution produces modules not because they produce more adaptable designs, but because modular designs have fewer and shorter network connections, which are costly to build and maintain. As it turned out, it was enough to include a "cost of wiring" to make evolution favor modular architectures.

To test the theory, the researchers simulated the evolution of networks with and without a cost for network connections.
"Once you add a cost for network connections, modules immediately appear. Without a cost, modules never form. The effect is quite dramatic," says Clune.
The results may help explain the near-universal presence of modularity in biological networks as diverse as neural networks -- such as animal brains -- and vascular networks, gene regulatory networks, protein-protein interaction networks, metabolic networks and even human-constructed networks such as the Internet.
"Being able to evolve modularity will let us create more complex, sophisticated computational brains," says Clune.
Says Lipson: "We've had various attempts to try to crack the modularity question in lots of different ways. This one by far is the simplest and most elegant."

Source: link

No comments: